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Functional Integral
Representations of Partition
Function Without Limiting
Procedure. Techniques of
Calculation of Moments
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A definition of the Feynman path integral which does not rest on a limiting
procedure based on time-slicing has been given by DeWitt-Morette.
We present in this paper a discussion of real Gaussian measures and
formulate expressions for the quantum statistical partition function
directly in terms of measures of integration on the topological vector
space ¢, of continuous functions defined on the time interval 7 =
(tz, tp), such that x(z,, t,) = 0 for all x € ¢o. We give a definition of a
measure for the space ¢, equivalent to the path integral based on the
Uhlenbeck-Ornstein probability distribution. We give expressions for the
partition function using the Wiener-Feynman measure and the Uhlenbeck—
Ornstein measure. As an exercise in the use of the new techniques, we
present calculations of moments of potential functions. The techniques
will enable one to solve in a rigorous manner practical problems in
quantum statistical mechanics.
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1. INTRODUCTION

A definition of Feynman’s path integral which does not rest on a limiting
procedure, based on time-slicing, has been given recently by DeWitt.?:®
This new development has provided the missing rigor to the path-integral
formalism of quantum mechanics and quantum statistical mechanics. In the
literature various measures for function space integration have been proposed.
The two important measures are the Wiener~Feynman® and the Uhlenbeck—
Ornstein®® measure. The importance of the Uhlenbeck-Ornstein measure
is in the path-integral formulation of quantum statistics, where it has been
shown® that it results in a great improvement in the approximate evaluation
of the partition function with decreasing temperature and/or decreasing
relative magnitude of the anharmonic part of the potential.

The formalism proposed by DeWitt in Refs. 1 and 2 is valid for complex
Gaussian measures and in that form is particularly suited for the study of
problems in particle physics and especially for the study of gauge fields. We
present extensions of DeWitt’s results to real Gaussian measures® and
formulate expressions for the partition function in terms of measures of
integration on the topological vector space ¢, of continuous functions
defined on the time interval T' = (z,, t,) such that x(z,) = x(¢,) = 0 for all
xed,. We state in Section 2 an immediate extension of propositions stated
and proved in Refs. 1 and 2 for evaluating integrals over the function space
¢, which we shall need for the approximate calculations of the partition
function. In Section 3 we given an expression for the partition function
using the Wiener-Feynman measure on the space ¢,,, which is the space of
continuous paths x on T such that x(z,) = x(#,) = x. We calculate in that
section moments of the potential function using the propositions stated in
Section 2. In Section 4 we give a definition of measure for the space 4,
equivalent to the path integral based on Uhlenbeck—Ornstein probability
distributions and give an expression for the partition function using this
measure on the space ¢,,.. An an exercise in the use of the new techniques,
we present calculations of moments of potentials. The examples covered in
Sections 3 and 4 should familiarize the reader with the use of new, versatile
techniques.

It may be emphasized that the final results obtained are not new and
the spirit of this paper is no more than to present rigorous calculations of
results contained in Refs. 3-5. The last section of this paper gives conclusions
and directions in which further investigations may be pursued.

2 We refer to as a measure on topological vector space what is called a promeasure in
Refs. 1 and 2.
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2. NOTATIONS AND PROPOSITIONS?

We consider a space ¢, of continuous path x of uniform norm defined
on a time interval 7' = (¢, ;) such that

x(ts) = x(6,) = 0
[ x(1)|| = sup|x(2)] for teT

In the function space integral formulation of the quantum partition
function one encounters integrals of a functional ¢(x) on ¢,, which may be
written symbolically

ey = [ o) dot) 0
where w is the real Gaussian measure v:hose Fourier transform Fuw is
Fo(p) = exp[—1W(p)] 2
W(u) is a quadratic form on M, the dual of ¢, defined by
W6 = [ du) [ i) 66 5) )
M 1is the space of bounded measure . on T such that
> = | 50 dutt) @
and in particular for the Dirac measure 8, and the Lebesgue measure A
{8, %y = x(o) )
A x> = f x(t) dt (6)
T

In this paper we shall restrict ourselves to two measures on the space
¢o: the Wiener-Feynman and the Uhlenbeck—Ornstein measures. The
covariance G(r, 5) for the Wiener—-Feynman measure is

G(}", S) = Y_(r - S)(r - ta)(tb - S)/(tb - ta)
+ YH(r = s)(s — )t — 1)t — ta) (M
and that for Uhlenbeck—Ornstein measure is*
G(r,s) = [2Y(r — s) sinh(r — 7,) sinh(z, — )
+ 2Y*(r — s)sinh(s — ¢,) sinh(z, — r)]/sinh(s, — t,) (8)
3 The discussion of this section is entirely based on the results of Refs. 1 and 2. For the

proof of the various propositions stated in this section the reader is referred to these
papers.

* Y+ and Y~ are the Heaviside step-up and step-down functions on T, respectively.
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We shall need in the following a quadratic form on M defined as
Wi 1) = [ dur) [ dufs) G, 5) ©)
T T

We next state the following definition and propositions for the case of
real Gaussian measures, which are similar to the corresponding results and
propositions given in Refs. 1 and 2.

Definition. Let @ be the measure on the vector space ¢, which is the
space of continuous functions x on the time interval T = (¢,, t,] such that
the functions are fixed only at one end, say

x(t) =0
¢, is a subspace of ¢. We define a normalization constant N

=] do(x)=N"1| da) (10)

d)xx ‘px.x
and the mean trajectory %(z)

x(t) = {8, XD, = N71| x(2) dao(x) (1

bxx

The integrals in Egs. (10) and (11) can be performed using the mapping
P, ¢ —Rrgiven by x — x; = (8, XD, ta = to {t; {ty (- {t, = t,. We have

da(x) = | 8(x, — x)P(xp|Xn_)P(Xp_1|Xs_2)
Prex Rn
X e P(xllx)ﬁ dx; (12)

For the Wiener—-Feynman measure

I S €S StV
PusCieaald = g o0 ™~ A =g P

and for the Uhlenbeck-Ornstein measure

1
PUO(xk+1|xk) = [2,,,{1 — exp[——2(tk+1 e t}c)]}]llz

{Xp o1 — X exp[—(tx o1 — 6HI12
30 = expl—2hers — T} (14)

X exp —
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Proposition 1.

Cpallpa, X))polCptzy XD) - @uCpin, XDI g,

{ 1
= NG (detF_W)T’zJW duy - din 1(uy) -+ @alut,)

X exp( . Z u, ngu,-)
2 i.j=1
<I1/i, x> = U, i= 1a27 ey H,y (15)
W is the matrix whose ij element is W(u;, 11;), which has been defined in Eq. (9).

Proposition 2. This is an obvious extension of Proposition 1:

<(P1(<.ul’ X = x>)¢2(<«“‘2’ X — )E>) o ‘Pn«ﬂm X — x>)>¢xx
= {pu({pr> XD)Pa({ptzs XD) = @ullttns X004, (16)

Proposition 3.

f (Zb )exp( Hzlxj mxzc)ﬂdxt

,n.(n 1)/2 u
- [?Wj F(u) exp(—?) du (17)
z ba;'b (18)
=1

The results given in this section are necessary and sufficient for the
calculations of Sections 3 and 4.

3. PARTITION FUNCTION IN THE WIENER-FEYNMAN
MEASURE

We consider a particle of mass unity in a potential ¥(x). The partition
function for this system is given by the following expression:

Z= fm D dy exp[*f dr << V(X(t))>>y]

< (o] - (v (eo)) oYy 09

el P>y, = D‘lfﬂ dx N<8(‘B—1 Lﬁ o) di = y) #lG x>)>a>xx
(20)

D= JR dx N<s(/a~1_f0 ") di — y)>¢xx @1

B = kT
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The exponential in the second term in the integrand of Eq. (19) can be
expanded in a series and then one can take {{ >», of the terms of the ex-
pansion. The motivation to write the representation (19) for the partition
function is the observation of Feynman® that one can save effort and
increase accuracy in the calculation by expanding the potential in the
integrand about the mean position given by

8
y =8 0 de @)
0
1t is therefore clear that we need moments of the type

LV (x(0)) = V(M) -+ V(x(p))> D,y
We outline the method of calculation of such moments and in particular

give in the following the details of the calculation of the moment of order
two. We therefore calculate

exp[—iyx(e) — ilx(p)]>>, for o> p
From Eq. (20) we have

Kexp[—iyx(o) — ilx(p)]>)y

+® B
=07t @ N ae [ty e = ) exol-ina(@) = i)

-~ 0 Dxx

(23)
Using expressions (10), (11), and (13), we obtain
N = 1/2=B)*2, X(1) = x (24)
We use the integral representation for the delta function
3(1 JB () dt — ) - ijm i exp[— L RO dt] & (25
Blo V)T, £l

Using Proposition 2, we have
ik [* . .
(o] =5 [ 20 a1 expt—a(o) expl - L)
0

Gxx

g pB
- exp[— 5[ 5w dr] expl— iy(o)] expl— iL7(p)]
X <<P1(<P«17 x>)¢2(<#27 x>)‘P3(<M3 s x>)>¢0 (26)

where py —> A, pg —> 8,5, pa —> 0,5 (g, XD = Uy, {pa, XD = Uy, {ug, X> = Uy;
and

@1({pa, XD) = exp[—(ik/B)u,]

(g, XD) = exp(—iyuz)

Pa({pa, XD) = exp(—ilus) 27N
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We calculate the integral on the right-hand side of Eq. (26) using
Propositions 1 and 3. The matrix W can be calculated using the expression
for covariance given in Eq. (7) and taking p; = A, pz = §,, and ps = 3§,.

The matrix W is found to be
$8° deB-0) 1B - p)
W= |38 ~0) (o/B)B—0) (p/AB—0)|
(B — p) (p/BYB — o) (p/B)B — p)
For this case F of Eq. (17) is exp and
b, = —ik/B, by = iy, by = —iL
From Egs. (18) and (28), we have
= > bW,
_ oK kyo(B — p) , Y?o(B — o)
= 2| + 20 2

kLp(B — p) | 2yip(B — o) | Pp(B — p)
YT EF YT p T ]

We thus obtain
g B
<exp[— LIRE0 dt] expl—iyx(o)] exp[-iz;x(p)1>

2
= exp[—ix(k + y + 0] exp%

X%

A parallel calculation gives
D = N = 1/2=B)"2
and

Kexp[—iyx(e) — iLx(p)]))y

= exp[—iy(y + 0] exp(—{ re, L8

+§E[P§+(a—p)2—ﬁ(o—p)])

oZp

Defining the Fourier transform of the potential

Ve@) = [ d enl-iner6)

(28)

(29)

(30)

€29

(32

(33)
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and using Eq. (33), we get

B8 B
fo do f do KV (RN V(RPN Dy

B [ + w0 + o
-2 f do f dp f dy j_m dL V)V (Q)<expl— iyx(o) — ilx(p) D>, (34)

The moment {{exp[—iyx(o)]>), can be obtained by putting { = 0 in
Eq. (33). This gives

exp[—iyx(e)]>>y = exp[—iyy — (*B/24)] (3%
Calculation of higher order moments presents no new difficulty.

4. PARTITION FUNCTION IN THE UHLENBECK-ORNSTEIN
MEASURE

The Uhlenbeck-Ornstein function integral representation of the parti-
tion function arises from the Green’s function of the dimensionless form of
the Schrédinger—-Bloch partial differential equation®

2 (& -5 vw)s (36)

where U(x) is the nonquadratic part of the potential ¥(x) in units of length
and time,*'® which reduce the one-dimensional Schrodinger-Bloch equation
to the form of Eq. (36). For a particle of mass unity, the end-~point parameter

B in the reduced units is
1 o2V 12
=% [(5;)] @7

The expression for the partition function in the Uhlenbeck—Ornstein
measure is the same as that given through Egs. (19)-(21) except for the
difference that the right-hand side of Eq. (19) is to be multiplied by a factor
of exp(—pB/2) and ¥ (x) is to be replaced by U(x). The integrals in the function
space ¢, and ¢,, are now performed with the real Gaussian measure of
covariance G(r, s) given in Eq. (8). Using expressions (10)-(12) and (14),
a straightforward calculation gives

_ eBIZ xz B
N = W CXp( - 'z' tanh—2~)

x cosh(t — 3B)

5 For simplicity in notation we take #i = 1.
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We next calculate <{{exp[—iyx(c) —ilx(p)}>>, for o > p. We retain the
notation of Section 3. The expressions for N and X(¢) given in Eq. (38) are
now to be used in Eq. (26). The matrix W for the covariance G(r, §) given in
Eq. (8) is found to be

_ E) 4sinh3(8 — o) . . o 4sinh3(B—p) .  »p
2(5 2 tanh 5 Teoshif sinh 3 " coshif sinh 3
_ 4 sinh ¥(B — 0') o 2sinh T _ 2 sinh p .
W= cosh 38 inh s h B ° inh (8 —-9) 7 B sinh (8 — o) (39)
4sinh4( — p) . . p 2sinhp . _ 2sinh p _
Tcosh1f sinh 3 Simhf sinh (8 — o) Sinh B sinh (8 — p)

3
The expression for ¢ = Z bi(2W.)b; is constructed from the matrix

i,j=1

W given in Eq. (39). The result corresponding to the expression of Eq. (31) is

<exp[— 5[ a0 | expl- o) expl—itx(a)] >,

_ .12k 8 . ycosh(oc — 4B)
= exp{—-zx[?— tanh 5t o iB 7

{ cosh(p — 4B) c?
+ ——azsh‘:ﬁ—]} *pg

(40)
From Eqgs. (38) and (21), one easily finds that for this case
N S 11 R By
= Fsinh ip (;) et exp — 7 (1)

Substituting the expression of Eq. (40) into Eq. (23) and taking for D
the right-hand side of Eq. (41), we get

{Lexp[—iyx(o) — icx(f’)]>>y,(a >0)

2L
B

—ply + 0 — yC{cothgcosh(a — p) — sinh(c — p)}] 42)

= exp[— é (gcothg — 1)( P+ )+ ==

and

Cexpl=ipx@d, = exp| ~ 5 (§eon - 1)1~ i| @)

There is no loss of generality in having presented calculations of only
second-order moments in this section and in Section 3. Extension of this
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program to higher order calculations is straightforward and can be per-
formed on similar lines.

5. CONCLUSIONS

This paper is the first in a series which is based on the definition of
function space integrals without a limiting procedure for expressions of the
partition function in quantum statistical mechanics. The techniques would
enable one to solve in a rigorous manner practical problems in statistical
physics and especially enable the study of transport properties and correlation
functions. One can choose at will measures on the topological vector space
of functions which would give a better approximation to the study of thermo-
dynamic properties in different temperature regions. This can be achieved
by selecting appropriate covariances G(r, s).
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